数Ⅱで習う「積分の公式」の一覧をまとめていきます。積分は高校数学Ⅱで習う最後の分野です。積分の公式を使うことで、不定積分、定積分、グラフ同士で囲まれた面積などを求めることができます。

積分の公式は数Ⅲも含めるとかなり多くなり、暗記するのが大変なので、まず数Ⅱの公式からしっかり使い方を覚えていただけたらと思います。

スポンサーリンク


【積分の公式①】

積分の公式

積分の公式で、おそらく一番最初に習うのがこの不定積分の公式です。公式を見ると複雑に見えますが、言葉で言い変えると、「を積分したければ、指数n(xの右上についている数字のこと)を1足して、xn+1とし、そのn+1で割ればよい」という公式です。

例えば、例①のxを積分すると、指数(xの右上についている数字)が2なので、2に1を足して、xとし、3で割ればよいということです。

つまり、xを積分すると、x÷3=x/3(3分のxの三乗)ということですね。なお、このとき積分定数Cを書き忘れることが非常に多いので注意しましょう。

また、例③のxを積分する場合は、xの指数は1が省略されているので、n=1のときだと考えてください。



【積分の公式②】

積分 公式

この積分の公式は、∫3xdx=3・∫xdxのように、「数字は前に出すことができる」という公式です。数字を前に出せば、3∫xdxとなり、∫xdxが先ほどの積分の公式①で計算できますね。

なお、ここでも積分定数Cを書き忘れないように注意しましょう。∫3xdx=xとすると、Cが抜けているので、減点または間違いになります。 



【積分の公式③】

積分、公式

この積分の公式は、簡単に覚えられる公式だと思います。∫数字dx=数字x+Cのように、「数字にxをつけて積分定数Cをたすだけ」という公式なんです。

つまり、例①のように3を積分したければ、3にxをくっつけて、3x+Cとすればいいだけなんです。



【積分の公式④】

積分公式

この積分公式は、「∫は分配してもよい」という公式です。例えば、∫(2x-3x)dx = ∫2xdx-∫3xdxという分配法則のような感じで∫をかけることができます。

スポンサーリンク



【定積分の定義】

定積分の定義

ここからは、定積分のお話しです。上の問題のように、∫に数字がついた積分を「定積分」といいます。ちなみに、∫の上についた数字を上端、下の数字を下端といいます。

例の問題だと、上端が2、下端が0ということになります。定積分は、まずf(x)の不定積分を求め、その不定積分のxに上端と下端の数字を入れたら求めることができます。

例の問題なら、x+2x-3の不定積分は、 x/3+x-3xなので、この式に上端のx=2を代入したものから、下端のx=0を代入した数を引けば完成です。

なお、定積分を求めるとき、積分定数Cは書かなくても構いません。なぜなら、積分定数Cを仮に書いたとしても、F(2)-F(0)をしたときに、C-Cとなり消えていくからです。

ちなみに、この問題が定積分の定義となるので、この定義さえ知っていれば、下の公式を知らなくても、定積分のほとんどの問題を解くことができます。



【積分の公式⑤】

積分の公式一覧

ここの積分公式からは、知っていると定積分の計算が簡単にできます。この公式は、「上端と下端が同じときに使える」公式です。上の例のように、上端と下端が同じ値なら、定積分はすべて0となります。



【積分の公式⑥】

積分、公式、一覧

この積分公式は、「上端と下端の値を入れ変えたいとき」に使える公式です。例の問題のように、上端の数が下端より小さい時に使うことが多い公式です。



【積分の公式⑦】

定積分の公式

この積分公式は、「同じ∫の定積分が2つ以上あるとき」に使える公式です。例のように、上端と下端が同じ∫が2つ以上あるときは、∫でくくることができます。

∫でくくることで、( )の中が計算できるので、この公式を知っていると、定積分の定義を使って普通に解くより、楽に解くことができます。



【積分の公式⑧】

定積分公式

この積分公式は、通称「1/6公式」と言われています。グラフ同士で囲まれた面積を求める時や、センター試験、二次試験で非常に利用価値が高いので、絶対に覚えておいた方が良い公式です。

この1/6公式が使える条件は、「∫の横の二次関数の解が上端と下端と同じ」になるときです。例えば、例①の二次関数は、黄色の線の(x-2)(x-3)ですね。この(x-2)(x-3)=0の解はx=2と3です。

この解2と3が上端と下端の数字と同じになっているのがわかりますか?こういう時に1/6公式が使えます。1/6公式自体は複雑で覚えにくいと思いますが、非常に便利な公式なので、たくさん問題を解いて、ぜひマスターしてください。



【積分の公式⑨】

定積分、公式

この公式は、「上端と下端の数字が異符号のときに使える」公式です。例①なら上端が2、下端が-2で異符号なので、この公式が使えます。

この公式を使うと、積分する関数のxやxなどの指数(xの右上にある数字のこと)が奇数の数を消すことができ、定積分の計算が楽になります。つまり、例①ならxと-2x、例②なら、5xを消すことができます。

スポンサーリンク